PV: From concept to large scale industry

Technology trends and opportunities for Norwegian companies

Erik Stensrud Marstein

Center Director – FME SUSOLTECH
Chief Scientist – IFE

Smart Energy Network – November 28th 2019

«Death inspires me like a dog inspires a rabbit»

-TØP

Research Center for Sustainable Solar Cell Technology

(«FME SuSolTech»: 2017 – 2025 ~ 250 MNOK)

Norges miljø- og biovitenskapelige universitet

Institute for Energy Technology

Agenda

- The PV industry in 2019
- Technology trends in PV
 - High efficiency, silicon-based PV
 - Utility-scale PV
 - Smart building
 - Building Integrated PV (BIPV)
 - Floating PV (f-PV)
- Resulting challenges from the success of PV (= more opportunities)

Main messages

PV is growing ridiculously fast

Huge commercial opportunities

PV industry = industry

No free lunches

Revolution

Evolution

We must participate

Innovation from «outside» hard

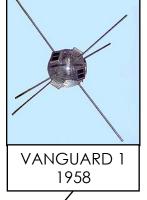
Dogma is hard to fight

«Home market», «neutrality»...

Solar is ready to deliver

Are we ready to accept?

A brief history of PV



1825

The current, if not wanted immediately, can be either stored where produced, in storage batteries, ... or transmitted a distance and there used

BELL LABS

1954

FRITTS 1883

1850

1900

1925

1950

1975

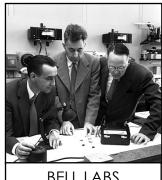
«OIL CRISIS»

1973 - 1986

2000

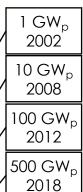
SUS LTECH TO

2025


The Norwegian Research Centre for Sustainable Solar Cell Technology

A brief history of PV

The current, if not wanted immediately, can be either stored where produced, in storage batteries, ... or transmitted a distance and there used


FRITTS 1883

BELL LABS 1954

«OIL CRISIS» 1973 - 1986

1825

1850

1875

1900

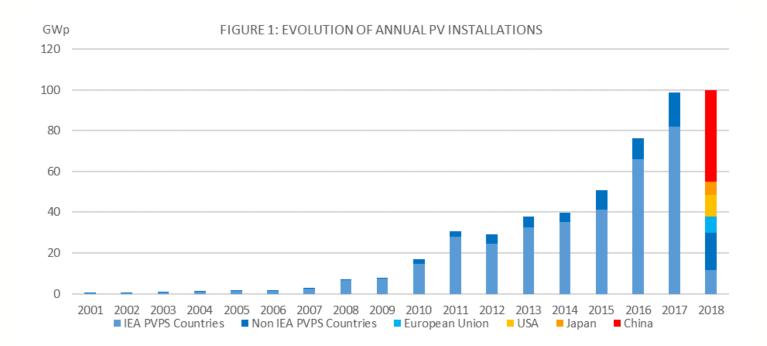
1925

1950

1975

2000

SCANWAFER


1996

2025

VISION AND SCIENTIFIC FUNDAMENT

FARLY INDUSTRIALIZATION

INDUSTRY

Kilde: IEA-PVPS 2019

Solar PV grew faster than any other fuel in 2016, opening a new era for solar power

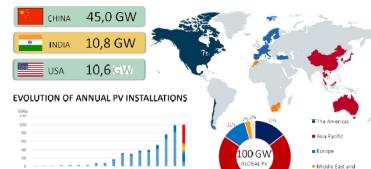
new solar PV capacity around the world grew by 50%, reaching over 74 gigawatts (Photograph: Shutterstock)

Explore findings from Renewables 2017

New solar PV capacity grew by 50% last year, with China accounting for almost half of the global expansion, according to the International Energy Agency's latest renewables market analysis and forecast. For the first time, solar PV additions rose faster than any other fuel, surpassing the net growth in coal.

Boosted by a strong solar PV market, renewables accounted for almost two-thirds of net new power capacity around the world last year, with almost 165 gigawatts (GW) coming online, according to the new report, Renewables 2017. Renewables will continue to have a strong growth in coming years. By 2022, renewable electricity capacity should

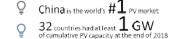
about 1,000 GW by 2022, which equals about half of the current global capacity in coal illd," said Dr Fatih Birol, the executive director of the IEA. "What we are witnessing is the expect that solar PV capacity growth will be higher than any other renewable


Source: IEA-PVPS 2018/Scatec Solar/IEA 2019

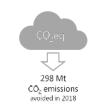
A Snapshot of Global PV Markets - 2019

THE LATEST SURVEY RESULTS ON PV MARKETS AND POLICIES FROM THE IEA PVPS PROGRAMME IN 2018.

Ir. Gaëtan Masson (IEA PVPS, Belgium), José Donoso (UNEF, Spain), Pius Hüsser (Nova Energie, Switzerland), Izumi Kaizuka (RTS Corporation, Japan), Dr. Johan Lindhal (Solenergi, Sweden), Francesca Tilli (GSF, Italy)


TOP PV MARKETS 2018

COUNTRIES WITH HIGHEST PV PENETRATION



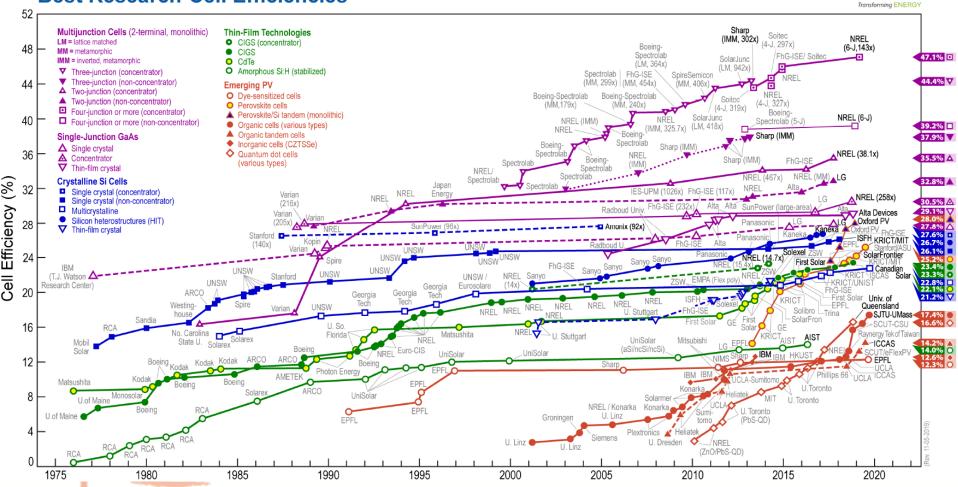
548 459 442

Africa

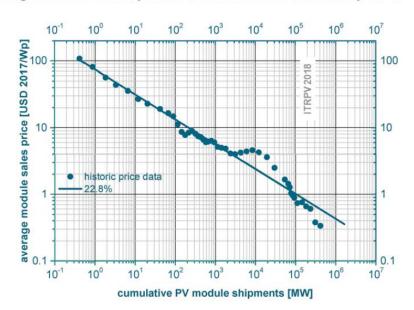
Rest of the World

100 GW_p

- ~400 million solar panels
- ~500 000 tons of SUPER-clean silicon
- ~25 billion wafers turned into ~25 billion solar cells

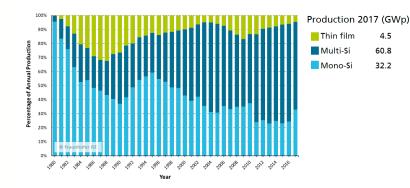


Technology trends


Best Research-Cell Efficiencies

How to win...

Learning curve for module price as a function of cumulative shipments



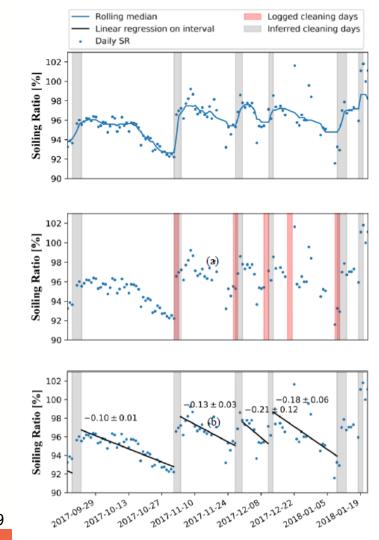
High efficiency, silicon-based PV

- Crystalline silicon completely dominates
- Introduction of high efficiency architectures
 - PERC, HJT, IBC, bifacial
- Efficient cells require high quality materials
 - Norwegian opportunity: we KNOW silicon
- The silicon tandem heavily investigated
 - Large efficiency boost available

PV Production by Technology Percentage of Global Annual Production

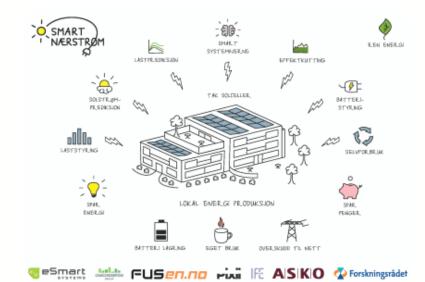
Data: from 2000 to 2010: Navigant; from 2011: IHS (Mono-/Multi- proportion from cell production). Graph: PSE GmbH 2

21 © Fraunhofe


Sustainable silicon production

- Si materials, ingots and wafers produced by factories <u>IN</u> Norway by 2018 were core constituents of a total PV capacity of 6.4 GW_p
- Every year, these produce more than 6 TWh
- This results in a global, annual reduction of electricity productionrelated emissions in excess of 6 Mtons CO₂!
- Norwegian speciality: sustainable silicon production!

Utility-scale PV


- Very large numbers of components
- Increasing complexity
 - Energy storage and/or conditioning
 - Hybridization
- Introduction of data-driven O&M
 - Performance and degradation analysis
 - · Big data
 - · Imaging technologies
 - Drone inspections
- Very exciting time in the PV industry
 - We learn NOW!

Source: Skomedal (IFE) 2019

Smart buildings

- Solar is a gateway to smartness...
- «Smartness»: digitalization
 - Monitoring systems
 - Metering, reporting, visualization
 - Logging, filtering and analytics
 - Fault detection and diagnostics (FDD)
 - Forecasting (production, load, grid prices)
 - Demand side management
 - Energy storage (which leads to even more «smartness»)

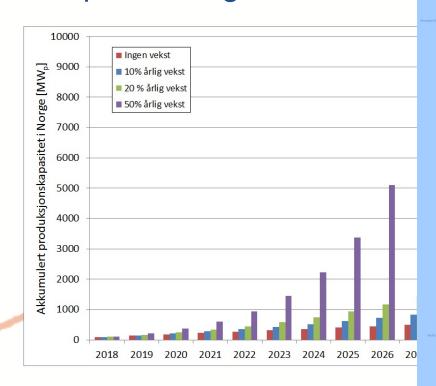
Building-integrated PV (BIPV)

- Potentially very large benefits
 - Substitution
 - Synergies during installation
 - Record low installation costs feasible
 - Record low environmental footprint within reach
- Norway among the leading countries
 - Bold building standards
 - Competent installers

Source: FUSen

Floating PV (f-PV)

- New, rapidly growing segment
- Combines PV and maritime competence
 - Excellent fit for Norway!
 - Can we exploit this fact?
- Several potentially important advantages
 - → Land use
 - «Cooling effect» = higher production
 - Low cost

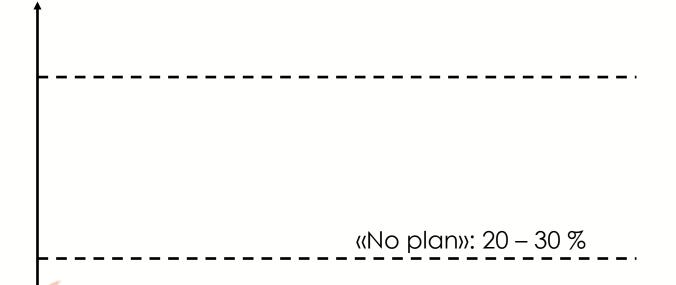


Source: OceanSun

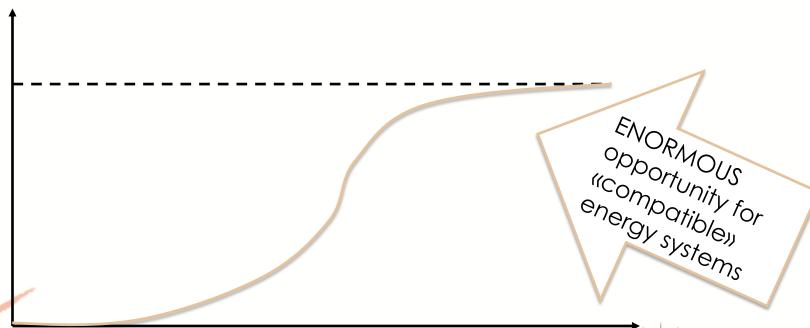
Related challenges

Eternal exponential growth is fun,

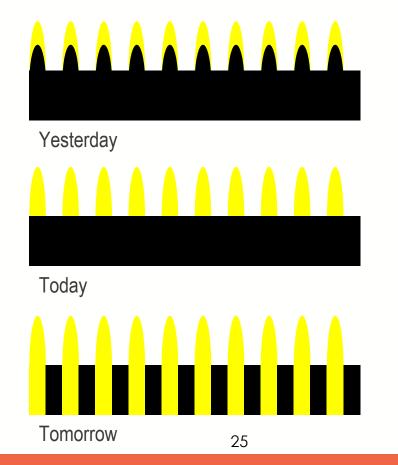
Kilde: Marstein (NTVA) 201

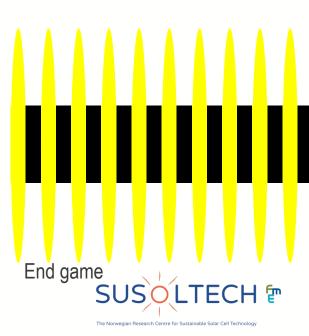


Plausible development



Tresholds




Tresholds

Who will fix this?

Concluding remarks

- Discovering a megatrend is not enough
 - We must supply competitive solutions for a real, future market!
- We have a PV industry
 - A very good starting point for an even larger PV industry!
- Everybody wants to win (incl. China)
 - We need optimism, not naivety!
- Much room for (evolutionary) innovation in the PV industry still!
 - Many good, new and old ideas to be implemented!
- PV is highly addictive...

Thank you for your attention!

The Norwegian Research Centre for Sustainable Solar Cell Technology