

Oslo Science Park, University of Oslo

5 March 2020

Renewable Energy & Zero-Emission Electrical Transport Systems

Øystein Ulleberg

Principal Scientist, Institute for Energy Technology, Kjeller

Associate Professor, University of Oslo

Director, MoZEES Research Center

	n	Ť	6	n	ts

01	Introduction -	Decarb	onizatio	on of T	ransport

- **O2** Energy & Transport Systems Sector Coupling
- Integrated Energy & ICT Systems Energy Informatics
- 04 MoZEES Heavy Duty Truck Case Study
- **O5** Conclusions & Discussion

Background & References

Greenhouse Gas (GHG) Emissions in the EU

Overall:

22% reduction since 1990

Transport:

20% increase to 857 MtCO₂-eq.

EU Carbon Emission Targets (wrt. 1990)

Overall GHG Targets

- 40% reduction by 2030
- 60% reduction by 2040
- 80-95% reduction by 2050

Transport GHG Targets

- 60% reduction by 2050
- New Cars: 95 g CO₂/km in 2021 (130 g CO₂/km in 2015)
- New Vans: 147 g CO₂/km in 2021 (3.5 t LDVs)

Projections for Transport Activity in the EU

Passenger Transport:

40% increase from 2010 to 2050

Freight Transport:

50% increase from 2010 to 2050

Future Projections for Passenger and Freight Transport

Energy demand by fuel type projected in EU Reference Scenario (2016)

Greenhouse Gas Emissions from Transport in Norway

• 52 million tonnes of CO₂-equivalents in 2018: ca. 30 % from transport

Source: SSB (Nov 2019)

Greenhouse Gas Emissions from Transport in Norway

• 52 million tonnes of CO₂-equivalents in 2018: ca. 30 % from transport

Norway's National Transport Plan (NTP 2018-2029):

Road Transport:

2025: 100% zero emission light-duty trucks

• 2030: 100% zero emission medium-heavy trucks

50% zero emission heavy-duty trucks

CO₂-neutral distribution in cities

Ferries:

• Low- and zero emission, when the technology is ready for use

	01	Introduction – Decarbonization of Transport
	02	Energy & Transport Systems – Sector Coupling
Contents	03	Integrated Energy & ICT Systems – Energy Informatics
	04	MoZEES – Heavy Duty Truck Case Study
	05	Conclusions & Discussion

Sector Coupling – Energy & Transport Systems

Sector Coupling – Energy & Transport Systems

Example 1 – Battery Electric Vehicles (EU)

• 250 million passenger BEVs (100%) \rightarrow 0.9 TW*

Example 2 – Hydrogen Fuel Cell Trucks & Buses (EU)

- 1 million FCETs (15%) + 0.25 million FCEBs (25%)
 - → 50 000 tpd of hydrogen*

*50 000 H2 Refueling Stations (each 1 tpd)

^{*}EU maximum power capacity = 1 TW (0.5 TW peak demand)

Energy & Transport Systems

Example 3 – Hydrogen for Maritime Transport (Norway)

Energy & Transport Systems

Example 3 – Hydrogen for Maritime Transport (Norway)

Possible Hydrogen marked in 2030: 60 tpd*

*Equal to 3 GW Water Electrolysis (1 TWh/year)

High Speed Vessels

Ferries

Supply Ships

Hydrogen Costs using Grid-based Water Electrolysis

Source: IEA (2019) 15

Future Hydrogen Cost from PV & Wind Water Electrolysis

2 - 4 USD/kgH₂

Source: IEA (2019) 16

	01	Introduction – Decarbonization of Transport		
	02	Energy & Transport Systems – Sector Coupling		
Contents	03	Integrated Energy & ICT Systems – Energy Informatics		
	04	MoZEES – Heavy Duty Truck Case Study		
	05	Conclusions & Discussion		

Energy Flow in Power Grids

Existing vs. Future Systems

Fundamental Principle of Supply and Demand in the existing Electricity System

Supply follows demand

Supply and demand in a RES-based Electricity System

Supply cannot always follow demand

Source: TU Dresden

Energy Flow in Power Grids

How to match Supply vs. Demand?

Load Shedding Reducing electricity demand Energy intensive industry processes

Source: TU Dresden

Power System Management

Centralized vs. Distributed Systems

Energy Informatics

Energy Systems & ICT Infrastructures

Future Electricity Systems

Flexibility is the key value

Source: SIEMENS

	01	Introduction – Decarbonization of Transport
	02	Energy & Transport Systems – Sector Coupling
Contents	03	Integrated Energy & ICT Systems – Energy Informatics
	04	MoZEES – Heavy Duty Truck Case Study
	05	Conclusions & Discussion

MoZEES – A Research Center on Zero Emission Transport

Battery & Hydrogen

- Technology Value Chains

Heavy Duty Transport: Road, Rail, Sea

Areas for Innovation & New Business

Materials

Components

Systems

260 MNOK (2017-2024)

37 Partners

60 Researchers + 20 Students

Case Study – Hydrogen Refueling & Fuel Cell Trucks

Oslo - Trondheim

	Today	2030
Annual transport of cargo	930 000 tons (average last 10 years)	1 150 000
Trips per working day	260	330
Zero emission trucks	0	100

Case Study – Hydrogen Fuel Cell Electric Truck (FCET)

Fuel	Energy Demand per trip	Efficiency of Fuel Cell / Engine	Fuel Demand
Hydrogen	729 kWh	55%	40 kg
Biodiesel	850 kWh	43%	208

Batteries for regenerative power increase overall efficiency by > 10%

Case Study – H2 Refueling Stations & Fuel Cell Trucks

Conclusions

- 1. Both passenger and freight **transport demands** are expected to increase towards 2050
- 2. Battery Electric most suitable and competitive option for lightduty vehicles, due to high efficiency
- 3. Hydrogen and Fuel Cell Electric most promising option for heavy-duty vehicles, due to high energy storage density
- 4. Zero-emission transport will require huge investments in new renewable power production & charging/refueling infrastructure
- 5. Advanced ICT-systems needed to optimize highly integrated renewable energy & transport systems

Thank you for your attention!

Øystein Ulleberg

Principal Scientist IFE | Director MoZEES

oysteinu@ife.no